Sections 8.2-8.4 parts 2&3 Chapter 8 Normal Subgroups Def A subgroup ACG such that Na=and for every aEG is called normal. left and right easets are the same G=UNa=VaN aeg aeg In ring theory, that was R/T for an ideal I The set of cosets is denoted by G/N Group structure - operation - on G/N Def (Na). (NC) = Nac (the coset whose representative is a) (the easet whose representative is c) = (the coset whise representative is ac) Th 8.10 This operation is well-defined: 8,12 For any bela and dele, we have MBd = Nac Since the cosets are equivalence classes, it suffices to check bd E Nac be La means b= n, a with n, e N dere means d= n2c with na EN It may be that ana + haa bd= h, anze | However, and=Ma - the subgroup is normal | |--| | ana Earl = Na wears ana = na such na Erlexist | | bd = h, ahze = h, nzae E Nac breause why EN as soon as | | Th 8,13(1) G/N with this operation is a group both u, EN, u, EN | | Pf - one checks with group axioms 3 the identity is the coset of the identity in G | | | | Terminology G/N is called factor-group quotient group | | Characterizations of normality | | 7h8.11 A subgroup NCG of a group G is normal if and only if: | | (a) a'Na = N for every a = G a'Na = ha'na n = Ny | | (3) aNa'EN | | $(u) \vec{a} + \vec{h} \vec{a} = \vec{h} - \vec{h} = \vec{h} - \vec{h} = \vec{h} - \vec{h} = \vec{h} - \vec{h} = $ | | $(5) a \lambda a' = \lambda$ | ``` Ex 3 p 252, 6x 15 p 253 6x 23p 254 Every subgroup of index 2 is normal. G D N [G: N] = 2 G=UNa= NUNa; NNNa= $ Na= 46 EG | BENY For every BENa, Na= N8 We'll prove 8.11 (d): for every aEE, we have a'Na EN If aEN, then ana EN for every NEN because N is a subgroup. Let a \(\) \(\) \(\) Then G= NUNa \(\) For the sake of a contradiction, assume that ana # 1 for some went Then ana ENa ana = n,a with n, EN a^{-1}N = N a = h, n-1 a=nni' EN, a contradiction. ```